Convergence of a mobile data assimilation scheme for the 2D Navier-Stokes equations
نویسندگان
چکیده
We introduce a localized version of the nudging data assimilation algorithm for periodic 2D Navier-Stokes equations in which observations are confined (i.e., localized) to window that moves across entire domain along predetermined path at given speed. prove that, if movement is fast enough, then perfectly synchronizes with reference solution. The analysis suggests an informed scheme subdomain according region where error dominant optimal. Numerical simulations presented compare efficacy follows regular pattern, one guided by error, and random.
منابع مشابه
Discrete Data Assimilation in the Lorenz and 2D Navier–Stokes Equations
Consider a continuous dynamical system for which partial information about its current state is observed at a sequence of discrete times. Discrete data assimilation inserts these observational measurements of the reference dynamical system into an approximate solution by means of an impulsive forcing. In this way the approximating solution is coupled to the reference solution at a discrete sequ...
متن کاملLiouville Theorem for 2d Navier-stokes Equations
(One may modify the question by putting various other restrictions on (L); for example, one can consider only steady-state solutions, or solutions with finite rate of dissipation or belonging to various other function spaces, etc.) We have proved a positive result for dimension n = 2 which we will discuss below, but let us begin by mentioning why the basic problem is interesting. Generally spea...
متن کاملRate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data
We are interested in the rate of convergence of solutions of 2D Navier-Stokes equations in a smooth bounded domain as the viscosity tends to zero under Navier friction condition. If the initial velocity is smooth enough( ), it is known that the rate of convergence is linearly propotional to the viscosity. Here, we consider the rate of convergence for nonsmooth velocity fields when the gradient ...
متن کاملDynamics of stochastic 2D Navier–Stokes equations
In this paper, we study the dynamics of a two-dimensional stochastic Navier-Stokes equation on a smooth domain, driven by multiplicative white noise. We show that solutions of the 2D Navier-Stokes equation generate a perfect and locally compacting C1,1 cocycle. Using multiplicative ergodic theory techniques, we establish the existence of a discrete non-random Lyapunov spectrum for the cocycle. ...
متن کاملA conservative discontinuous Galerkin scheme for the 2D incompressible Navier-Stokes equations
In this paper we consider a conservative discretization of the two-dimensional incompressible Navier–Stokes equations. We propose an extension of Arakawa’s classical finite difference scheme for fluid flow in the vorticity-stream function formulation to a high order discontinuous Galerkin approximation. In addition, we show numerical simulations that demonstrate the accuracy of the scheme and v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2023
ISSN: ['1553-5231', '1078-0947']
DOI: https://doi.org/10.3934/dcds.2023078